Blockade of caspase cascade overcomes malaria-associated acute respiratory distress syndrome in mice.

10 Feb 2022
Sercundes MK, Ortolan LS, da Silva Julio V, Bella LM, de Castro Quirino T, Debone D, Carneiro-Ramos MS, Christoffolete MA, Martins JO, D'Império Lima MR, Alvarez JM, Amarante-Mendes GP, Gonçalves LA, Marinho CRF, Epiphanio S
Malaria is an enormous burden on global health that caused 409,000 deaths in 2019. Severe malaria can manifest in the lungs, an illness known as acute respiratory distress syndrome (ARDS). Not much is known about the development of malaria-associated ARDS (MA-ARDS), especially regarding cell death in the lungs. We had previously established a murine model that mimics various human ARDS aspects, such as pulmonary edema, hemorrhages, pleural effusion, and hypoxemia, using DBA/2 mice infected with Plasmodium berghei ANKA. Here, we explored the mechanisms and the involvement of apoptosis in this syndrome. We found that apoptosis contributes to the pathogenesis of MA-ARDS, primarily as facilitators of the alveolar-capillary barrier breakdown. The protection of pulmonary endothelium by inhibiting caspase activation could be a promising therapeutic strategy to prevent the pathogenicity of MA-ARDS. Therefore, intervention in the programmed death cell mechanism could help patients not to develop severe malaria.